Сбор нагрузок на плиту перекрытия

Нагрузки на плиты перекрытия от перегородок по СП (СНиП)

Требования по назначению нагрузок действующих на плиты перекрытия от перегородок приведены в следующих нормативных документах:

  • СП 20.13330.2016 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85* (обязательный к применению);
  • Пособие по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-84)

Выделим основные пункты данных нормативных документов, которые касаются непосредственно сбора нагрузок от перегородок на плиту перекрытия.

Согласно СП 20.13330.2016 Нагрузки и воздействия

Согласно п 5.4 СП 20.13330.2016 Нагрузки и воздействия вес временных перегородок относится к длительным нагрузкам (Pl).

В соответствии с п.8.2.2 СП 20.13330.2016 нормативные значения нагрузок на ригели и плиты перекрытий от веса временных перегородок следует принимать в зависимости от их конструкции, расположения и характера опирания на перекрытия и стены . Указанные нагрузки допускается учитывать как равномерно распределенные добавочные нагрузки, принимая их нормативные значения на основании расчета для предполагаемых схем размещения перегородок, но не менее 0,5 кПа. Коэффициент надежности (γf) , согласно п.8.2.7, для равномерно распределенных нагрузок следует принимать:

  • 1,3 — при полном нормативном значении менее 2,0 кПа;
  • 1,2 — при полном нормативном значении 2,0 кПа и более.

Коэффициент надежности по нагрузке от веса временных перегородок следует принимать в соответствии с 7.2 СП 20.13330.2016.

п.7.2 СП 20.13330.2016. Коэффициенты надежности по нагрузке для веса строительных конструкций и грунтов приведены в таблице 7.1.

Таблица 7.1 СП 20.13330.2016

(таблица отредактирована порталом buildingclub.ru, удалены коэффициенты надежности для грунтов)

Конструкции сооружений и вид грунтов

Коэффициент надежности по нагрузке γf

Конструкции

Металлические, за исключением случаев, указанных в 7.3

Бетонные (со средней плотностью свыше 1600 кг/м 3 ), железобетонные, каменные, армокаменные, деревянные

Бетонные (со средней плотностью 1600 кг/м 3 и менее), изоляционные, выравнивающие и отделочные слои (плиты, материалы в рулонах, засыпки, стяжки и т.п.), выполняемые:

Примечание: п.7.3 СП 20.13330.2016 При проверке конструкций на устойчивость положения против опрокидывания, а также в других случаях, когда уменьшение веса конструкций и грунтов может ухудшить условия работы конструкций, следует произвести расчет, принимая для веса конструкции или ее части коэффициент надежности по нагрузке γf =0,9, если иное значение не указано в нормах проектирования этих конструкций.

Согласно пособию по проектированию к СНиП 2.03.01-84

Согласно п.1.20 пособия при расчете перекрытая по всем предель­ным состояниям вес перегородок, расположенных вдоль пролета плит, учитывается следующим обра­зом:

а) нагрузка от веса глухой жесткой перегородки (например, железобетонной сборной, выполняемой из горизонтальных элементов, железобетонной или бетонной монолитной, каменной и т. п.) прикладывается сосредоточенно на расстоянии 1/12 длины пе­регородки от ее краев;

б) при наличии в жесткой перегородке одного проема, целиком расположенного в пределах одной половины перегородки, нагрузка от веса меньшего простенка (включая вес половины надпроемной части перегородки) прикладывается сосредоточенно на расстоянии 1/3 ширины этого простенка от края перегородки, а нагрузка от веса остальной части перегородки — на расстоянии 1/12 длины этой части перегородки от краев проема и перегородки; при ином расположении проема нагрузка прикладывает­ся на расстоянии 1/18 длины соответствующих частей перегородки от их краев;

в) при наличии в жесткой перегородке двух прое­мов и более нагрузка от веса перегородки прикла­дывается сосредоточенно по центрам участков, опи­рающихся на перекрытие;

г) для прочих перегородок 60% их веса прини­мается распределенным по длине перегородки (на участках между проемами), а 40% — в виде со­средоточенных сил, приложенных в соответствии с подпунктами „а» — „в».

В соответствии с п.1.21 пособия распределение местной нагрузки между эле­ментами сборных перекрытий, выполняемых из многопустотных или сплошных плит, при условии обеспечения качественной заливки швов между плитами производится с учетом рекомендаций:

а) при расчете по всем предельным состояниям принимается следующее распределение нагрузки от веса перегородок, расположенных вдоль пролета равных по ширине плит:

  • если перегородка расположена в пределах одной плиты, на эту плиту передается 50% веса перегород­ки, а по 25% ее веса передается на две смежные плиты;
  • если перегородка опирается на две соседние пли­ты, вес перегородки распределяется поровну между ними;

б) при расчете по предельным состояниям второй группы местные сосредоточенные нагрузки, распо­ложенные в пределах средней трети пролета плиты, распределяются на ширину, не превышающую длины пролета; при расчете по прочности такое рас­пределение сосредоточенных нагрузок может быть допущено лишь при условии соединения смежных плит по длине шпонками, проверяемыми расчетом (см. п. 3.115 пособия).

Примечание. Если перекрытие образовано двумя плитами, опертыми по трем сторонам, при расположении перегородки в пределах одной плиты на эту плиту передает­ся 75 % веса перегородки; в этом случае нагрузка от веса перегородки на перекрытие передается, согласно п. 1.20 пособия , при расположении перегородки как вдоль, так и поперек плиты.

Использованные термины в статье:

Нагрузки длительные — это нагрузки, изменения расчетных значений которых в течение расчетного срока службы строительного объекта пренебрежимо мало по сравнению с их средними значениями (п.3.5 СП 20.13330.2016).

Длительные нагрузки входят в состав временных нагрузок (п.5.1 СП 20.13330.2016).

Нормативные (базовое) значение нагрузок — это основная базовая характеристика, устанавливаемая соответствующими нормами проектирования, техническими условиями или заданием на проектирование (п.3.7 СП 20.13330.2016).

Расчетное значение нагрузки — это предельное (максимальное или минимальное) значение нагрузки в течение срока эксплуатации объекта (п.3.9 СП 20.13330.2016).

Согласно п.4.2 СП 20.13330.2016 расчетное значение нагрузки определяется как произведение ее нормативного значения на коэффициент надежности по нагрузке γf, соответствующий рассматриваемому предельному состоянию. Минимальные значения коэффициента надежности в основных и особых сочетаниях нагрузок определяются следующим образом:

  • при расчете по предельным состояниям 1-й группы — в соответствии с 7.2 (представлен в статье выше, таблица 7.1) -7.4, 8.1.4, 8.2.7, 8.3.5, 8.4.5, 9.8, 10.12, разделом 11, 12.5 и 13.8;
  • при расчете по предельным состояниям 2-й группы — принимаются равными единице, если в нормах проектирования конструкций и оснований не установлены другие значения.

Примеры поверочных расчетов

Сбор нагрузок проведен в соответствии с СП 20.13330.2011 «Нагрузки и воздействия» [1].

Читайте также:  Светильники для натяжного потолка: точечные, потолочные встроенные, виды встраиваемых ламп для потолка с подсветкой, диодные лампочки, размеры, варианты

В расчете учтены следующие нагрузки:
1) Полезная нагрузка и нагрузка от временных перегородок (на перекрытия)

Нормативные значения полезной нагрузки приняты в соответствии с п.8.2.1 [1] по Таблице 8.3 [1]: 1,5 кПа – для жилых помещений; 0,7 кПа – для чердачных помещений. В соответствии с требованиями п.8.2.2 [1], нагрузка от временных перегородок учитывалась как равномерно распределенная добавочная нагрузка, нормативное значение которой принято равным 0,5 кПа.
В соответствии с п.8.2.2 [1] и, принимая во внимание, что полные нормативные значения полезной нагрузки меньше 2,0 кПа, коэффициент надежности по полезной нагрузке, принят равным 1,3. В соответствии с п.8.2.2 и п.7.2 [1] коэффициент надежности по нагрузке от веса временных деревянных перегородок принят по Таблице 7.1 [1] равным 1,1.

2) Снеговая нагрузка (на покрытие)

Нормативное значение снеговой нагрузки вычислено согласно п.10.1 [1]:

В соответствии с п.10.12 [1] коэффициент надежности по снеговой нагрузке принят равным 1,4.

3) Нагрузка от веса конструкций

Значение нагрузок от 1 м2 перекрытий/покрытия вычислено в зависимости от их состава по результатам вскрытий.
Плотность материалов, входящих в состав перекрытий/покрытия, принята на основе справочных данных: 7850 кг/м3 – для стали; 2400 кг/м3 – для бетона; 1900 кг/м3 – для кирпичной кладки; 700 кг/м3 – для дерева; 1800 кг/м3 – для раствора штукатурных слоев; 1200 кг/м3 – для шлака засыпки и иного строительного мусора.
Масса 1 м.п. стальной балки (рельс) P принята на основе справочных данных равной: 25,6 кг.
Коэффициенты надежности по нагрузке от веса строительных конструкций приняты по Таблице 7.1 [1]: 1,05 – для стальных конструкций; 1,1 – для деревянных и бетонных.

РАСЧЕТ БАЛОК ПЕРЕКРЫТИЙ

2.1. Расчет стальных балок перекрытий

1) Общие положения
Расчет стальных балок перекрытий проведен в соответствии с СП
16.13330.2011 «Стальные конструкции» [2].
Проверено выполнение следующих требований СП 16.13330.2011 [2]:

(расчет по первой группе предельных состояний: п.8.2.1 [2])

где – сигма мах — максимальное нормальное напряжение в опасном сечении балки;
Ry – расчетное сопротивление стали при изгибе по пределу текучести.

  • f ≤ [f] (расчет по второй группе предельных состояний)
    где f max – максимальный прогиб балки;

– [f] предельный прогиб балки.

В расчете приняты следующие прочностные и деформационные
характеристики стали: Ry=210 МПа (в соответствии с п.18.2.4 [2]); E=2·105 МПа.
Нормативное и расчетное значения нагрузки на 1 м2 балок (gн, gр) приняты по результатам сбора нагрузок (см. соответствующий пункт). Геометрические характеристики балок (расчетный пролет lр, средняя грузовая полоса балки aср.) приняты на основе обмеров. Геометрические характеристики сечения балок (Iy, Wy)
приняты на основе справочных данных.

Наибольшие внутренние усилия (изгибающий момент Mmax, поперечная сила Qmax) и прогиб балки fmax вычислены по общим правилам Сопротивления материалов для данной расчетной схемы:

Предельный прогиб [f] вычислен в соответствии с Таблицей Е.1 СП 20.13330.2011 [1] в зависимости от пролета балки.

2) Расчет стальных балок (рельс) перекрытия подвала

Геометрические характеристики балки: аср.=0,95 м, lр=6,0 м, [f]=lр/200=6,0/200=0,030 м=3,0 см.

Геометрические характеристики сечения балки:

Нагрузка от 1 м2 перекрытия: gр=8,41 кПа (gн=7,23 кПа).

Нагрузки на 1м.п. балки: qр=gр·а=8,41·0,95=7,99 кН/м (qн=gн·а=7,23·0,95=6,87 кН/м).

Наибольшие внутренние усилия:

Расчет по первой группе предельных состояний (условия прочности)

Расчет по второй группе предельных состояний (условие жесткости)

Вывод: стальные балки (рельс) перекрытия подвала не удовлетворяют условиям прочности и жесткости.

2.2. Расчет деревянных балок перекрытий

1) Общие положения
Расчет деревянных балок перекрытий проведен в соответствии с СП
64.13330.2011 «Деревянные конструкции» [3].
Проверено выполнение следующих требований СП 64.13330.2011 [3]:

(расчет по первой группе предельных состояний: п.6.9 [3])

где сигма макс – максимальное нормальное напряжение в опасном сечении балки;

Rи – расчетное сопротивление древесины при изгибе.

(расчет по второй группе предельных состояний)
где f max – максимальный прогиб балки;
и [f] — предельный прогиб балки.

В расчетах принята древесина второго сорта со следующими прочностными и деформационными характеристиками:

Нормативное и расчетное значения нагрузки на 1 м2 балок (gн, gр) приняты по результатам сбора нагрузок (см. соответствующий пункт). Геометрические характеристики балок (расчетный пролет lр, средняя грузовая полоса балки aср.) приняты на основе обмеров. Геометрические характеристики сечения балок (Iy, Wy)
вычислены по общим правилам Сопротивления материалов для данного профиля сечения:

Читайте также:  Провод ШВВП: расшифровка и конструктивные особенности

– для круглого сечения (черепные бруски в запас не
учитывались).

Наибольшие внутренние усилия (изгибающий момент Mmax, поперечная сила Qmax) и прогиб балки fmax вычислены по общим правилам Сопротивления материалов для данной расчетной схемы:

Предельный прогиб [f] вычислен в соответствии с Таблицей Е.1 СП 20.13330.2011 [1] и Таблицей 19 СП 64.13330.2011 <3>в зависимости от пролета балки (выбрано наименьшее значение).

2) Расчет деревянных балок (b×h=100×200 мм) перекрытия первого-третьего этажей

Геометрические характеристики балки: аср.=1,0 м, lр=6,0 м,

Геометрические характеристики сечения балки (b×h=100×200 мм):

Нагрузка от 1 м2 перекрытия: gр=4,52 кПа (gн=3,68 кПа).

Нагрузки на 1м.п. балки: qр=gр·а=4,52·1,0=4,52 кН/м (qн=gн·а=3,68·1,0=3,68 кН/м).

Наибольшие внутренние усилия:

Расчет по первой группе предельных состояний (условия прочности)

Расчет по второй группе предельных состояний (условие жесткости)

Вывод: деревянные балки перекрытия первого-третьего этажей (b×h=100×200 мм) не удовлетворяют условиям прочности и жесткости.

3) Расчет деревянных балок (b×h=100×200 мм) перекрытия четвертого этажа (чердачное перекрытие)

Геометрические характеристики балки: аср.=1,05 м, lр=6,0 м, [f]=lр/200=6,0/200=0,030 м=3,0 см.
Геометрические характеристики сечения балки (b×h=100×200 мм):

Нагрузка от 1 м2 перекрытия: gр=4,48 кПа (gн=3,77 кПа).
Нагрузки на 1м.п. балки: qр=gр·а=4,48·1,05=4,70 кН/м (qн=gн·а=3,77·1,05=3,96 кН/м).

Наибольшие внутренние усилия:

Расчет по первой группе предельных состояний (условия прочности)

Расчет по второй группе предельных состояний (условие жесткости)

Вывод: деревянные балки перекрытия четвертого этажа (b×h=100×200 мм) не удовлетворяют условиям прочности и жесткости.

РАСЧЕТ СТРОПИЛЬНОЙ СИСТЕМЫ

1) Общие положения
Расчет деревянных элементов стропильной системы проведен в соответствии с СП 64.13330.2011 «Деревянные конструкции» [3].
Проверено выполнение следующих требований СП 64.13330.2011 [3]:

(расчет по первой группе предельных состояний: п.6.17 [3])

где сигма max– максимальное нормальное напряжение в опасном сечении балки;
Rс – расчетное сопротивление древесины при сжатии.

  • f ≤ [f] (расчет по второй группе предельных состояний)
    где f max – максимальный прогиб стропильной ноги;

[f] – предельный прогиб стропильной ноги.

В расчетах принята древесина второго сорта со следующими прочностными и деформационными характеристиками: Rс=14 МПа; Е=1·104 МПа.

Нормативное и расчетное значения нагрузки на 1 м2 балок (gн, gр) приняты по результатам сбора нагрузок (см. соответствующий пункт). Геометрические характеристики балок (расчетный пролет lр, средняя грузовая полоса балки aср.) приняты на основе обмеров.

Геометрические характеристики сечения балок (Iy, Wy) вычислены по общим правилам Сопротивления материалов для данного профиля сечения:

– для прямоугольного сечения (черепные бруски в запас не учитывались).

Наибольшие внутренние усилия (изгибающий момент Mmax, поперечная сила Qmax) и прогиб балки fmax определены с помощью вычислительного комплекса SCAD. Предельный прогиб [f] вычислен в соответствии с Таблицей Е.1 СП 20.13330.2011 [1] и Таблицей 19 СП 64.13330.2011 <3>в зависимости от пролета балки (выбрано наименьшее значение).

РАСЧЕТ СТЕН

Прочностной расчет стен

Прочностной расчет кирпичных стен проведен в соответствии с СП 15.13330.2012 «Каменные и армокаменные конструкции» [3].

Произведен расчет кирпичных столбов (b×h=500×650 мм) по оси Б.

Проверено выполнение требования п.7.1 СП 15.13330.2012 [4]:

Значение расчетного сопротивления кладки сжатию R принято равным 2,0 МПа.
Плотность кирпичной кладки ро, а также раствора штукатурных слоев, принята на основе справочных данных равной 1900 кг/м3. Коэффициент надежности по нагрузке от веса кладки принят по Таблице 7.1 [1] равным 1,1.

2) Расчет кирпичных столбов (b×h=500×650 мм) по оси Б
Продольная сила, действующая на нижней плоскости столба

Минимальная несущая способность участка столба

Вывод: несущая способность кирпичных столбов по оси Б достаточна для восприятия действующих на них нагрузок.

4.2. Теплотехнический расчет стен

1) Общие положения
Теплотехнический расчет кирпичных стен проведен в соответствии с СП 50.13330.2012 «Тепловая защита зданий» [6].
Произведен расчет наружной кирпичной стены толщиной в два кирпича дореволюционного размера

выполненной из кирпича полнотелого керамического и оштукатуренной с двух сторон (средняя толщина слоя 25 мм, γ0=1800 кг/м3).

2) Теплотехнический расчет наружных стен
Характеристики стены

Вывод: сопротивляемость наружной стены теплопередаче недостаточна

РАСЧЕТ ФУНДАМЕНТОВ И ГРУНТОВ ОСНОВАНИЯ

1) Общие положения
Расчет фундаментов и грунтов основания проведен в соответствии с СП 22.13330.2011 «Основания зданий и сооружений» [5].
Произведен расчет фундамента кирпичного столба по оси Б.
Проверено выполнение требования п.5.6.7 СП 22.13330.2011 [5]:

где p ср. – среднее давление под подошвой фундамента;
R – расчетное сопротивление грунтов основания фундамента.

В соответствии с инженерно-геологическими изысканиями в сжимаемой толще залегают супеси пылеватые. Расчетное сопротивление грунта основания R принято равным 250 кПа. Плотность бутовой кладки принята на основе справочных данных равной 2400 кг/м3.

2) Расчет фундамента продольной стены

Вывод: пластические деформации под подошвой фундамента несущих столбов не развиваются глубже допускаемого значения.

Нагрузка на плиту перекрытия: сколько выдержит 1м2 пустотной плиты

Сбор нагрузок производится с учетом требований СНиПа 2.01.07-85* (или по новому СП 20.13330.2011) «Актуализированная редакция» [1].

Данное мероприятие для перекрытия жилого дома включает в себя следующую последовательность:

1. Определение веса «пирога» перекрытия.

В «пирог» входят: ограждающие конструкции (например, монолитная железобетонная плита), теплоизоляционные и пароизоляционные материалы, выравнивающие материалы (например, стяжка или наливной пол), покрытие пола (линолеум, паркет, ламинат и т.д.).

Читайте также:  Один из самых прочных материалов для покрытия пола: керамогранит

Для определения веса того или иного слоя нужно знать плотность материала и его толщину.

2. Определение временной нагрузки.

К временным нагрузкам относятся мебель, техника, люди, животные, т.е. все то, что способно двигаться или переставляться местами. Их нормативные значения можно найти в таблице 8.3. [1]. Например, для квартир жилых домов нормативное значение равномерно распределенной нагрузки составляет 150 кг/м2.

3. Определение расчетной нагрузки.

Делается это с помощью коэффициентов надежности по нагрузки, которые можно найти в том же СНиПе. Для веса строительных конструкций и грунтов — это таблица 7.1 [1]. Что касается равномерно распределенной временной нагрузки и нагрузки от материалов, то здесь коэффициент надежности берется в зависимости от нормативного значения по пункту 8.2.2 [1]. Так, по нему, если вес составляет менее 200 кг/м2 коэффициент равен 1,3, если равен или более 200 кг/м2 — 1,2. Также данный пункт регламентирует значение нормативной нагрузки от веса перегородок, которая должна равняться не менее 50 кг/м2.

4. Сложение.

В конце необходимо сложить все расчетные и нормативные значения с целью определения общего значения для дальнейшего использования их в расчете на несущую способность.

В случае сбора нагрузок на балку ситуация та же. Только после получения конечных значений их нужно будет преобразовать из кг/м2 в кг/м. Делается это с помощью умножения общей расчетной или нормативной нагрузки на величину пролета.

Для того, чтобы материал был более понятен, рассмотрим два примера. В первом примере соберем нагрузки на перекрытие, а во втором на балку.

А после рассмотрения примеров с целью экономии времени можно воспользоваться специальным калькулятором. Он позволяет в режиме онлайн собрать нагрузки на перекрытие, стены и балки перекрытия.

Виды нагрузок на перекрытия

Сама по себе железобетонная плита обладает определенным весом. При опирании на две или три стены плита должна удерживать его по всей площади без провисов и прогибов. Кроме собственного веса перекрытие испытывает статические (постоянные) и динамические (переменные) нагрузки. Последние создаются людьми, перемещающимися по верхним этажам, а статические воздействуют на верхнюю и нижнюю плоскости плиты. К ним относятся:

  • утепление и шумоизоляция перекрытий;
  • стяжка пола и его декоративная отделка;
  • конструкция потолка нижележащего этажа;
  • перегородки;
  • мебель и оборудование;
  • подвесные светильники и коммуникации, закрепленные на потолке либо в самой плите;


Нагрузка на нижнюю часть плиты бывает очень ощутимой Источник сев-электрик.рф
В свою очередь статическая нагрузка подразделяется на распределенную и сосредоточенную. Мебель, межкомнатные стены, стяжка создают распределенную нагрузку, а тяжелые люстры или подвешенный к потолку гамак – точечную. При выполнении расчетов к точечным нагрузкам применяют повышающие коэффициенты.

Допустимая нагрузка на плиту перекрытия не должна быть больше её несущей способности. При проектировании зданий подбирают плиты с приличным запасом прочности, чтобы исключить любые риски при повышении нагрузки.

Смотрите также: Каталог компаний, что специализируются на перепланировке загородных домов любой сложности

Несколько дополнительных сведений

Данный параметр должен выполняться очень грамотно и расчетливо. Если нагрузка будет приходиться в одну точку, то это будет сильно влиять на срок службы перекрытия.

Конечно, если известны все технические параметры перекрытия, ориентировочная масса, которая будет основной нагрузкой, выполнить нужные расчеты достаточно легко. При этом необходимо учесть существование нескольких разновидностей нагрузок.

В первую очередь, это продолжительность нагрузки. Она может существовать в виде:

  • постоянной;
  • временной.

Постоянную нагрузку создают:

  • мебель;
  • люди;
  • бытовая техника;
  • вещи, постоянно расположенные в помещении.

Кроме того, постоянно давит масса несущей конструкции, оказывает влияние горное давление.

Под временными нагрузками понимаются те, которые появляются при строительстве самых разных конструкций.

К особым нагрузкам относится сейсмическое воздействие, возможное изменение свойств грунта.

Кратковременные нагрузки возникают от оборудования, применяемого при строительстве здания, при атмосферном воздействии. Когда делается расчет самой большой нагрузки, необходимо учесть и длительные нагрузки. Они составляют большую группу, к ним можно отнести:

  • замерзание воды;
  • появление льда;
  • возникновение трещин;
  • линию жесткости;
  • кирпичную стенку:
  • цементную стяжку;
  • покрытие напольной поверхности;
  • массу перегородок;
  • массу оборудования для выполнения стационарной работы, это могут быть конвейерные установки, различные аппараты, твердые или жидкообразные тела;
  • вес стеллажей, находящихся на складе или в другом помещении;
  • массу скопившейся пыли, этот фактор часто игнорируют, однако его необходимо обязательно принимать к сведению, это также лишний вес;
  • атмосферные осадки.
  • Расчет железобетонной монолитной плиты перекрытия
  • Первый этап: определение расчетной длины плиты
  • Определение геометрических параметров железобетонного монолитного перекрытия
  • Существующие виды нагрузок, сбор которых следует выполнить
  • Определения максимального изгибающего момента для нормального (поперечного) сечения балки
  • Некоторые нюансы
  • Подбор сечения арматуры
  • Количество стержней для армирования монолитной железобетонной плиты перекрытия
  • Сбор нагрузок — некоторый дополнительный расчет



Особенности панелей перекрытия с пустотами

Способность плит противостоять нагрузкам зависит от их конструкции и марки цемента, идущего на изготовление. К примеру, если плита изготовлена из цемента марки М500, то готовое изделие может удерживать точечное приложение веса в 500 кг на квадратный сантиметр. Это предельная кратковременная нагрузка на плиту перекрытия пустотную, тогда как постоянная нагрузка намного меньше этого значения.

Читайте также:  Проводим свет на балконе

Однако эти данные были бы верны только для плит, изготовленных из бетона без армирования. На самом деле их несущая способность гораздо выше за счет усиливающего стального каркаса из качественной арматуры.


Схема армирования ж/б плиты Источник profundamenti.ru

Армирование плит производится во всех направлениях с усилением торцов, опирающихся на стены, двойным поясом. Это необходимо для увеличения несущей способности кромок, на которые опираются стены верхних этажей и конструкция кровли.

Это важно! Если железобетонными плитами перекрывается здание, построенное из легких ячеистых бетонов или керамических блоков, по верху несущих стен устраивают армопояс.


Тяжелые перекрытия можно укладывать только на монолитный ж/б пояс Источник mdolgih.ru

Виды плит для устройства перекрытий

Прежде чем пытаться определить, какую нагрузку выдерживает плита перекрытия пустотные 6 метров или другой длины, стоит разобраться в разновидностях таких плит. Они представляют собой плоские панели с продольными внутренними полостями круглого, овального или восьмиугольного сечения.

Помимо них заводы ЖБИ выпускают и монолитные ребристые и П-образные плиты. Отсутствие в них отверстий повышает несущую способность до 2000-3000 кг/м2, но большой вес таких изделий оказывает серьезную нагрузку на фундамент и стены зданий. Поэтому в жилищном, и особенно частном домостроении предпочтение отдают пустотным плитам. Их дополнительными достоинствами являются лучшая шумоизоляция и возможность скрытой прокладки коммуникаций в пустотных каналах.

Между собой они отличаются габаритами, формой и размером пустот. Самыми распространенными являются панели с полостями круглого сечения, они имеют обозначение ПК, а предшествующая этой аббревиатуре цифра указывает на диаметр поперечного сечения каналов.

  • 1ПК – диаметр цилиндрических пустот равен 15,9 см.
  • 2ПК – 14 см.
  • 3ПК – 12,7 см.
  • 7ПК – 11,4 см.


У плит могут быть разные внешние габариты и размеры пустот Источник studfile.net
В частном и малоэтажном строительстве рекомендуется применять плиты перекрытия 7ПК с уменьшенным сечением пустот.

Аббревиатура ПБ для пустотных плит указывает на метод её формирования безопалубочным способом.

Внешние габаритные размеры плиты регламентируются стандартами. Существует множество типоразмеров, отличающихся:

  • толщиной (от 160 до 400 мм);
  • длиной (от 2,4 до 15,5 м);
  • шириной (от 1,0 до 3,6 м).

Эти данные, как и расчетная нагрузка на плиту перекрытия, записаны в маркировке изделий.

Как самостоятельно посчитать нагрузку

Чтобы выполнить расчет нагрузки на перекрытие, нужно определить положение плиты в конструкции здания, для чего необходим проект или поэтажный план. Вес, приходящийся на плиту, зависит от отделки пола и потолка, наличия стоящих на ней перегородок, меблировки и оборудования помещения.

Расчет можно вести по площади всего перекрытия, суммируя нагрузки целого этажа и разделив полученное значение на количество панелей, необходимых для устройства межэтажной перегородки. Но более точные данные получают, вычисляя нагрузки покомнатно либо на отдельную плиту, потому что для спальни с легкой отделкой и ванной с теплым полом в бетонной стяжке и тяжелым оборудованием она может очень отличаться.


Нагрузка на плиты в разных частях дома отличается Источник mdv63.ru

Для примера возьмем ту же плиту ПК40.12-8. При толщине 220 мм её вес составляет 1420 кг (этот параметр указывается в технической документации). Также потребуется вычислить площадь бетонной панели. В нашем случае она равна 4,8м2.

Расчет ведется при условии опирания плиты на две торцевые стороны. Если она дополнительно опирается на внутренние несущие стены или колонны, нагрузка снижается.

Обратите внимание! Перекрытие не должно опираться на межкомнатные перегородки. Между их верхним краем и плитой оставляют зазор, равный 1/150 от длины плиты – это величина допустимого прогиба без нарушения целостности и несущей способности плиты. В нашем примере зазор равен 3,2 см, он заполняется монтажной пеной или утеплителем.


Технологический зазор необходим для обеспечения целостности перегородки при прогибе плиты Источник homemasters.ru

Первый этап: определение расчетной длины плиты

Плита перекрытия может быть абсолютно любой длины, а вот длину пролета балки уже необходимо высчитывать отдельно.

Реальная длина может быть абсолютно любой, а вот расчетная длина, выражаясь другими словами, пролет балки (в данном случае плиты перекрытия) – совсем другое дело. Пролетом является расстояние между несущими стенами в свету. Это длина и ширина помещения от стенки до стенки, следовательно, определить пролет довольно просто. Следует измерить рулеткой либо другими подручными средствами данное расстояние. Реальная длина во всех случаях будет большей.

Железобетонная монолитная плита перекрытия может опираться на несущие стенки, которые выкладываются из кирпича, камня, шлакоблоков, керамзитобетона, пено- либо газобетона. В подобном случае это не очень важно, однако в случае, если несущие стенки выкладываются из материалов, которые имеют недостаточную прочность (газобетон, пенобетон, шлакоблок, керамзитобетон), также необходимо будет выполнить сбор некоторых дополнительных нагрузок.

Данный пример содержит расчет для однопролетной плиты перекрытия, которая опирается на 2 несущих стенки. Расчет плиты из железобетона, которая опирается по контуру, то есть на 4 несущих стенки, или для многопролетных плит рассматриваться в данном материале не будет.

Читайте также:  Примеры и варианты оформления потолков для детских комнат

Чтобы то, что было сказано выше, усваивалось лучше, следует принять значение расчетной длины плиты l = 4 м.

Вернуться к оглавлению

Видео описание

Пример расчета нагрузки от перегородок показан в этом видеоролике:

Это важно! Делая ремонт, старайтесь не нагружать перекрытия сложенными в одном месте строительными материалами, особенно сухими смесями, имеющими большой вес при малом объеме.


Так делать нельзя, материалы следует равномерно распределять по всей площади либо завозить частями Источник prostostroy.com
Если в результате расчетов общая нагрузка получилась выше допустимой, указанной в маркировке, то для устройства перекрытия выбирают более мощные плиты либо отказываются от тяжелых конструкций пола, перегородок и декоративных элементов, заменяя их более легкими.

Коротко о главном

Чтобы узнать, сколько выдерживает плита перекрытия, заложенная в проект дома, нужно разбираться в маркировке этих железобетонных изделий. Предельная нагрузка указывается в ней третьей по порядку цифрой в килограммах на квадратный дециметр площади. Для определения её несущей способности суммируют все нагрузки, приходящиеся на плиту от её собственного веса, конструкции пола и потолка, перегородок, мебели, людей, и сравнивают полученные данные с параметрами изделия. Суммарная расчетная нагрузка должна быть меньше предельно допустимой.

Пример расчета фундамента

Теперь подсчитаем примерно, какова масса дома размерами 6х6 из оцилиндрованного бревна. Древесина сосна естественной влажности.

Наименование Объем Вес за единицу Общий вес
Стены
бревно d200 18,65 м 3 520 кг в м 3 9698 кг
Полы и перекрытия
брус 100х150 1,8 м 3 520 кг в м 3 936 кг
брусок 40х40 0,7 м 3 364 кг
доска 25мм 1,7 м 3 884 кг
Кровля
доска 50х150 1,3 м 3 520 кг в м 3 676 кг
доска 25мм 1,3 м 3 676 кг
рубероид 75 м 2 2 кг в м 2 150 кг
Итого: 13384 кг

Мы получили что суммарный масса дома составляет 13384 кг. Далее в этим данным нам необходимо прибавить полезную или по другому эксплуатационную нагрузку. Наш дом размером 6х6 имеет площадь 36 м 2 . Одно перекрытие на уровне пола и одно чердачное. Подсчитаем:

36 м 2 х210 кг/м 2 =7560 кг

36 м 2 х105 кг/м 2 =3780 кг.

Просуммировав получаем 11340 кг.

Теперь найдем нагрузку от снежного покрова. Пусть наш дом находится в Москве, площадь горизонтальной проекции крыши составляет 49 м 2 . По таблице находим что Москва находится в III климатической зоне и имеет снеговую нагрузки 180 кг/м 2 .

Набор прочности бетона и зависимость от внешних факторов

Для набора бетоном заданных показателей прочности нужно время, которое называется временем твердения бетона. Оно определяется различными условиями: факторами окружающей среды и качеством составляющих бетонной смеси.

  • Твердение бетона
  • Факторы, влияющие на скорость набора прочности бетона
  • Контроль набора прочности бетона
  • Методы ускорения твердения бетона
  • Нормативные документы, регламентирующие набор прочности бетона
  • Набор прочности бетона по суткам
  • Заключение

Время набора прочности бетона требуется знать, чтобы понимать, когда можно переходить к следующим стадиям строительства, а когда уже можно снимать опалубку.

Твердение бетона

Бетон – это искусственный каменный материал, который получается при твердении оптимально подобранной смеси из воды, вяжущего вещества, крупного и мелкого заполнителя, а также специализированных добавок. Крупным заполнителем служат куски гравия или щебня, а мелким – песок.

При смешивании всех компонентов образуется цементное тесто, которое постепенно затвердевает, образуя прочный искусственный камень. В зависимости от качества смеси, марки цемента и входящих в состав добавок бетон имеет разные сроки твердения.

При нормальных условиях, то есть при влажности около 100% и комнатной температуре, время набора прочности бетона составляет 28 суток. В условиях современного строительства это слишком большой срок, поэтому зачастую твердение бетона ускоряют.

Факторы, влияющие на скорость набора прочности бетона

Факторы, от которых зависят сроки схватывания и твердения бетонной смеси:

  • активность цемента, его марка;
  • введение добавок-ускорителей твердения;
  • соотношение вода-цемент в растворе;
  • способ укладки и уплотнения бетонной смеси;
  • технология приготовления смеси;
  • влажность;
  • температура окружающего воздуха.

Набор прочности бетона напрямую зависит от температуры. Бетон может твердеть только при положительных температурах, так как в его составе присутствует вода. При замерзании воды процесс набирания прочности прекращается, он возобновляется, когда столбик термометра поднимется выше нуля, но бетон при этом становится менее прочным.

Чем больше температура, тем интенсивнее идет процесс твердения.

График набора прочности бетона в зависимости от температуры:

* На графике изображен процесс твердения бетона марки В25.

Контроль набора прочности бетона

Измеряют прочность бетона специальными приборами. Это позволяет определить, насколько хорошо конструкция в дальнейшем будет справляться с нагрузками. Для расчета прочности необходимо знать предельные нагрузки, которым сопротивляется изделие, при этом не разрушаясь.

Есть два метода контроля прочности бетона: разрушающий и неразрушающий. В первом случае из партии бетонных изделий выбирают несколько образцов и испытывают их на гидравлических прессах. Во втором – из бетона делают образцы в виде кубиков, которые проходят все технологические этапы производства вместе с основными изделиями, а затем испытывают на прессах уже кубики.

Также прочность бетона можно оценивать специальными приборами:

  • электронными, типа «Оникс»;
  • ультразвуковыми приборами, которые основаны на возможности прохождения ультразвука через плотные тела, при этом он не теряет своей интенсивности, но он сильно ослабевает при прохождении через воздух;
  • механическими приборами (например, молотком Кашкарова).
Читайте также:  Пошаговая инструкция для тех, кто хочет установить гипсокартонные потолки своими руками

Методы ускорения твердения бетона

Существует несколько наиболее часто используемых методов ускорения набора прочности бетона:

  1. Термовлажностная обработка или ТВО. Термовлажностную обработку проводят в пропарочных камерах ямного типа, глубина которых составляет 2 метра. В камере необходимо обеспечить атмосферу насыщенного водяного пара и поддерживать температуру 90-100 °С. Процесс обработки бетона в камере продолжается в течение 12-15 часов.

Режимы термовлажностной обработки:

  • выдержка (2-3 часа);
  • подъём температуры со скоростью 25-30 °С/ч;
  • изотермический прогрев (t=80-90 °С), продолжительность: 6-8 часов;
  • снижение температуры со скоростью 30-40 °С/ч.

После того, как бетон прошел ТВО, он приобретает 70-100% прочность бетона 28-суточного твердения.

  1. Электропрогрев. Этот метод осуществляется при помощи переменного электрического тока, основан он на преобразовании электрической энергии в тепловую. Температура бетона повышается, из-за этого ускоряется процесс набора прочности. Существуют два способа электропрогрева:
  • внутренний прогрев, который происходит за счет тепла, выделяющегося при прохождении тока через бетон;
  • обогрев изделия внешними источниками. Это могут быть инфракрасные излучатели, или контактные электронагреватели.

Важно! Изделия должны быть закрыты пароизоляционной пленкой. Это поможет избежать испарения воды.

  1. Контактный прогрев. Бетонное изделие помещают в обогреваемую опалубку или форму. Изделие покрывают пленкой, чтобы не допустить испарения.
  2. Введение добавок, которые ускоряют процесс набора прочности. Ускорители твердения оказывают большое влияние на скорость набора прочности бетона на протяжении первых суток затвердевания бетона, со временем их воздействие ослабевает. К 28-суточному состоянию прочность бетона с добавками и без них становится одинаковой, что наглядно прослеживается по графику набора прочности бетона:

Нормативные документы, регламентирующие набор прочности бетона

Основным документом, в котором прописаны правила контроля прочности бетона, определены его сроки и условия твердения, является ГОСТ 18105-2010 «Бетоны. Правила контроля и оценки прочности». Также бетонные работы регламентируются ГОСТ 26633-2012 «Бетоны тяжелые и мелкозернистые».

В промышленном строительстве процесс набора прочности бетона может регулироваться локальными правовыми актами, к примеру, правилами производства работ.

Набор прочности бетона по суткам

Согласно ГОСТ 26633-2012 «Бетоны тяжелые и мелкозернистые», если не указан набор прочности бетона по суткам, требования по прочности должны быть обеспечены в возрасте 28 суток.

Наглядно процесс набора прочности бетона в зависимости от срока твердения проиллюстрирован в таблице.

Набор прочности бетона от температуры и по суткам таблица:

Заключение

Показатели твердости и прочности бетонных изделий меняются под воздействием различных условий и факторов. Задачей инженеров-строителей является подбор оптимальной бетонной смеси и создание определенных внешних воздействий для обеспечения необходимой прочности бетона, которая достигается за тот или иной период времени.

График (таблица) набора прочности бетона по суткам летом и при отрицательных температурах

Ключевым достоинством бетонных конструкций являются их высокие прочностные свойства и надежность. В зависимости от марки материал может использоваться в различных условиях. При этом степень набора прочности зависит от разных факторов.

Процесс набора

Бетон представляет собой популярный каменный материал, который создается на основе смеси воды, вяжущей добавки и заполнителя. В его состав вносятся специализированные добавки, отвечающие за особые свойства и функции.

В процессе гидратации происходит образование надежных монолитных соединений, которые приобретают свойства прочного искусственного камня. Для формирования монолита требуется несколько недель (до 28 суток), а получение заводских качеств занимает до 6 месяцев.

  1. Схватывание. Является начальной стадией.
  2. Твердение. Финишная стадия.

Зная все нормы созревания, можно определить, сколько лет прослужит монолитная конструкция.

Схватывание

Использовать стройматериал сразу после заливки нельзя. Перед этим необходимо ознакомиться с графиком набора прочности бетона и спецификой каждого этапа его созревания. Нередко смесь доставляется на строительную площадку с помощью специальной техники, поэтому ее поддерживают в подвижном состоянии с помощью автоматизированного оборудования. Технология тиксотропии сохраняет базовые параметры консистенции до момента заливки, приостанавливая естественное созревание.

Но если выдержать смесь дольше допустимого времени или подвергнуть ее воздействию высоких температур, требуемые рабочие свойства будут ухудшены. В таблице набора прочности бетона упоминается, что он схватывается за период от 20 минут до 20 часов. Если работа выполняется при отрицательных температурах в зимнее время, термин увеличится до 6-10 часов.

Еще некоторые эксперты используют для зимних работ специализированные добавки и теплоизолирующие материалы. Выбирая этот вариант, необходимо ознакомиться с их свойствами и инструкцией по применению.

  1. Пар.
  2. Электроток.
  3. Известь-кипелку.
  4. Экзотермические цементы.
  5. Всевозможные ускорители.

Специалисты рекомендуют приступать к заливке раствора в формы при +20°C. В таком случае схватывание наступит через 1 час и займет не больше 60 минут. В жаркую погоду процесс происходит практически моментально.

Если применяются марки М300 и М200, а окружающая температура держится на отметке +20 °C, схватывающий процесс будет длиться в течение 1 часа.

Твердение

Следующий этап заключается в затвердевании бетонной смеси под воздействием гидратации. Процесс заключается в формировании из минералов цемента новых соединений. Если в составе раствора отсутствует влага, затвердевание будет замедлено или вовсе приостановлено, из-за чего материал не получит требуемую прочность и начнет растрескиваться.

Читайте также:  Подушки в интерьере гостиной: виды стилей, достоинства и особенности

Если такие требования соблюдены, процесс наращивания прочности составит 7-14 суток. За этот термин раствор получает 60-70% заявленной прочности, после чего процесс замедляется.

При выдерживании бетона в воде его прочностные свойства будут более высокими, чем при твердении на воздухе. Сухая среда способствует быстрому испарению влаги и остановке процесса. Это связано с тем, что зерна цементной смеси не успевают вступить в гидратацию. Поэтому, чтобы избежать неприятных последствий, необходимо исключить преждевременное высыхание бетона.

В процессе твердения монолита его объем постоянно меняется. Еще материал дает усадку — в поверхностных зонах она более быстрая, чем во внутренней части. В случае нехватки влажности при твердении на поверхности бетона появятся усадочные трещины. Дефекты возникают также при обильном тепловыделении.

Если возводимая конструкция будет подвергаться дополнительным нагрузкам или есть необходимость быстрее демонтировать опалубку, процесс твердения придется ускорить. Для таких задач задействуют специализированные добавки. Их концентрация определяется опытным путем в строительной лаборатории.

Чтобы получить заводскую прочность в сжатые сроки, необходимо правильно обслуживать раствор и поддерживать его во влажном состоянии, защищая от сотрясений, ударов и повреждений. При ненадлежащем уходе материал станет низкокачественным и уязвимым к растрескиванию.

Ключевой причиной нехватки прочности является низкая температура, которая сопровождает строителей при зимнем бетонировании.

  1. Замедление гидратации и рост сроков набора.
  2. Вымерзание жидкости из состава бетонной смеси, из-за чего набор прочностных свойств приостанавливается.

При низкой температуре сроки получения прочностных свойств сильно увеличиваются, поэтому к исходному сырью добавляют специальные компоненты.

В зимних условиях инженеры задействуют противоморозные добавки, которые запускают процессы набора и снижают температуру замерзания жидкого вещества.

При необходимости ускорить твердение при высокой температуре или повышенной влажности исходное сырье подвергается прогреву. После заливки смеси поверхность бетона нужно усилить матами или щитами, которые будут удерживать температуру от гидратации и сохранять требуемые условия. Если наполнитель замерзнет, его запрещено использовать для дальнейших работ.

Электрический прогрев бетона востребован на тех строительных площадках, где имеется доступ к трансформаторам с большой мощностью. Выполнение бетонных работ с применением электрического оборудования — лучший способ получить заводскую прочность без потери эксплуатационных качеств материала.

В зимний период бетон укрывают с целью защиты поверхности от потери тепла.

Особенности набора прочности

График твердения бетона зависит от разных факторов. При опускании температурных показателей процесс замедляется, а нулевая отметка термометра приостанавливает его, поскольку жидкость в составе начинает замерзать, а качество материала ухудшается.

График набора прочности бетона В25 определяется его составом. Составы более высокой марки твердеют быстрее, что заставляет работников приступать к обработке более оперативно. В период с 3 по 10 сутки после заливки материалу нужно обеспечивать благоприятные условия. При теплой погоде раствор укрывают водоотталкивающей пленкой, а сам камень увлажняется каждые сутки по 6-7 раз.

Смесь нужно изолировать от прямых лучей. В зимний период бетон прогревают искусственным путем и утепляют. Для этих целей используют специальное обогревательное оборудование, препятствующее замерзанию жидкости и защищающее конструкцию от осадков. Необходимо придерживаться нормативно-безопасного срока набора, который указывается в диаграммах СНиП.

От чего зависит набор прочности

  1. Марку цементной смеси.
  2. Пропорции воды и цемента.
  3. Пропорции других добавок.
  4. Метод уплотнения.
  5. Температурно-влажностный режим.
  6. Способ и скорость укладки.
  7. Качество и интенсивность увлажнения.

По мере повышения марки бетона нужно менять пропорции компонентов, поскольку от них зависят конечные прочностные свойства.

Фундаменты из высоких марок цементной смеси характеризуются повышенной надежностью, большим сроком службы и прочностью. В холодный период камень становится более прочным из-за способности выделять тепло, однако, чтобы сбалансировать график образования монолита, лучше внести в состав специализированные добавки. Они предназначаются для ускорения твердения и остановки гидратации.

С такими компонентами состав приобретает марочную прочность уже через 2 недели. На набор прочностных свойств влияет тип компонентов состава. Так, глиноземистый цемент может упрочняться даже в сильный мороз, поскольку он способен выделять в 7 раз больше тепла, чем классический портландцемент.

Важное значение отыгрывает форма и фракция зерен органических добавок. Если они обладают неправильной формой и шероховатой поверхностью, это создает благоприятные условия сцепления и повышает качество материала. По мере увеличения доли воды происходит расслоение массы.

Для ускорения процесса и сокращения термина выдержки бетона лучше воспользоваться пескобетонами с минимальным соотношением воды/цемента. Если материал не имеет хорошего уплотнения, в процессе созревания он получит не больше 50% от заявленной прочности. Используя ручные уплотняющие приспособления, можно поднять показатель на 30-40%.

График по суткам

График получения заводской прочности бетона по суткам указывает временной интервал, за который смесь приобретает заводские свойства. В благоприятной среде состав успевает «созреть» за 28 суток, при этом наибольшая эффективность твердения замечается в течение первых 5 дней. Через неделю с момента заливки прочностной показатель достигает 70%. При этом приступать к дальнейшим работам разрешается только после получения 100% значения, т.е. через 28 суток.

  1. Выдержка бетона в опалубке.
  2. Созревание смеси после демонтажа опалубочной конструкции.

Если работа выполняется в холодный период, конструкцию нужно дополнительно обогревать и защищать гидроизолирующими материалами. В противном случае процесс полимеризации будет замедлен.

Читайте также:  Раздвижные двери на роликах своими руками – инструкция установки + видео
Марка бетона М200-М300 (раствор создавался на базе портландцемента М400-М500) Среднесуточная температура, при которой твердеет бетон, °C Интервал твердения
1 2 3 5 7 14
Прочность бетона на сжатие (% от заводского значения)
-3 3 6 8 12 15 20
5 12 18 28 35 50
+5 9 19 27 38 48 62
+10 12 25 37 50 58 72
+20 23 40 50 65 75 90

Для ускорения процесса и сокращения времени выдержки следует воспользоваться пескобетонами с минимальным соотношением воды к цементу. Если пропорции воды и цемента равны ¼, сроки из графика будут сокращены в 2 раза. Чтобы получить положительный результат, состав можно разбавить пластификаторами.

Нормативные документы, регламентирующие набор прочности бетонной смеси

Ключевым документом, регламентирующим сроки и условия твердения бетона, является ГОСТ 18105-2010. Еще обработка бетона контролируется стандартом ГОСТ 26633-2012. Для промышленного возведения построек используются другие правовые акты.

Прочностные свойства бетонных конструкций зависят от многих факторов и создаются под воздействием различных условий. Задача строителей заключается в подготовке правильной бетонной смеси и обеспечении благоприятных условий для повышения прочности.

Технология набора прочности бетона в процессе выполнения строительных работ

Главное свойство бетонной смеси определяет набор прочности бетона, отражающий качественное состояние монолитной конструкции. Поскольку она находится во взаимосвязи со структурой данного строительного материала, то набор прочности можно поделить на два шага, связанных со схватыванием и затвердеванием бетона. Для последнего характерно наличие физико-химических свойств, возникающих при взаимодействии цемента с водой. Кода идет формирование бетона, то гидратация цемента вызывает образование других соединений.

Схема приготовления бетона.

Как происходит набор прочности бетона

Схватывание состава может произойти в первые дни с того момента, как была изготовлена консистенция из цемента и воды. Время ее схватывания находится в прямой зависимости от температуры воздуха. Если она составляет 20°С, то может понадобиться около одного часа. Поскольку процесс застывания бетона не мгновенный, а достаточно долговременный, то для набора прочности материала может потребоваться несколько месяцев.

Зачастую схватывание цемента происходит приблизительно спустя около двух часов с того момента, как был затворен цементный раствор, а окончательный процесс может начаться приблизительно спустя три часа. Поэтому на данной стадии может помочь ускоритель схватывания бетона.

Изображение 1. График набора прочности бетона.

Начало данной стадии может быть отодвинуто в результате снижения температурного уровня, а ее продолжительность существенно возрастает. Если уровень температуры воздуха составляет 0°С, то начало этапа схватывания может произойти спустя от 6 до 10 часов после того, как произошло затворение смеси. При этом данный процесс способен растянуться на 15-20 часов. Если температуры завышены, то период схватывания бетона может быть сокращен, что составит около 10-20 мин.

Схватывание бетона предполагает то, что данный состав должен оставаться подвижным весь период, что позволяет оказывать влияние на смесь. Механизм тиксотропии, связанный с уменьшением вязкости субстанции в условиях механического воздействия на нее, то есть периодического смешивания бетона, который схватился не полностью, твердение и процесс высыхания бетона не начинаются. Данное свойство учитывают в процессе доставки раствора на бетоносмесителе, поскольку состав при этом должен перемешиваться в миксере, что позволяет сохранять все его важные свойства.

Вращение миксера машины препятствует высыханию цементного раствора, не позволяя твердеть смеси достаточно долго. Возможно и развитие необратимых последствий, которые называют «свариванием» бетона, а это снижает его полезные свойства. Данный процесс особенно быстро может происходить летом.

Что представляет собой процесс твердения бетона

Ниже перечислены особенности, характерные для бетона:

Относительная прочность бетона в разные сроки твердения при различных температурах.

  1. Чем ниже уровень температуры внешней среды, тем медленней твердеет состав и нарастает его прочность.
  2. Если температура не превышает нулевую отметку по Цельсию, то вода в составе начинает замерзать, а твердение смеси уже не происходит. Повышение уровня температуры влечет за собой возобновление твердения.
  3. Влажность среды позволяет всей строительной массе приобретать более высокую прочность, чем в процессе затвердевания бетона вне помещения.
  4. Процесс схватывания бетона может стать замедленным и практически непрерывным при отсутствии влаги, так как именно она необходима в первую очередь при гидратации цемента.
  5. Если температура повышается до 80-90°С, то происходит значительное увеличение скорости процесса нарастания прочности в условиях максимальной влажности.

Пар высокого давления позволяет пропаривать смесь автоклавным способом, что осуществляется только при создании соответствующих условий.

Набор прочности бетона — это непостоянная величина. Если твердение бетона происходит в нормальных условиях, то набор прочности начинается через одну-две недели, что составляет от 60 до 70% от того уровня прочности, который набирается за 28 дней. Далее он продолжается, но очень медленно. С момента, когда была произведена заливка раствора, затвердевание бетона является максимальным.

При правильном течении процесса гидратации должны соблюдаться определенные условия. Уровень влажности должен составлять от 90 до 100%, а температуры — от 18 до 20°С. При нарушении данных условий может произойти изменение времени застывания состава.

Переход воды при отрицательных температурах в твердое состояние вызывает в результате промерзания бетона давление кристаллов льда на массу частиц цемента, что может снижать качество состава.

Таблица соответствия марок и классов бетона.

Читайте также:  Постельное белье ИКЕА - фото лучших новинок из каталога 2020 года

Смесь начинает затвердевать и при низком уровне влажности. Это вызвано прекращением поступления влаги, что требуется для гидратации цемента.

Если для конструкции характерны идеальные условия, то гидратация возобновляется. Когда подходит к концу уже вторая неделя, то смесь уже имеет прочность, составляющую 80% от основной первоначальной прочности. После этого ее набор замедляется.

На практике по истечении 28 дней завершение набора прочности не происходит, поскольку длительность данного процесса может составлять несколько лет. Когда смесь достигает трехлетнего возраста, то его прочность соответствует 200-250% от величины, характерной для возраста бетона, равного 28 суткам.

Никто не может дать однозначного ответа на вопрос о длительности процессов твердения смеси. Все зависит от той нагрузки, которая запланирована для той или иной конструкции.

Как осуществляют испытания

Например, если планируется строительство забора из металлического сайдинга либо досок, то для его возведения будет достаточно устройства бетонного ленточного фундамента. Если требуется начать строительство дома на бетонном фундаменте, то без помощи специалиста высокой квалификации здесь не обойтись. Процесс набора прочности в зависимости от температуры показан на рисунке (ИЗОБРАЖЕНИЕ 1).

Изображение 2. Таблица набора прочности бетона.

Марочная прочность, которая набрана за 28 суток, на рисунке взята за 100%. Оценка класса бетона производится спустя 28 суток. Осуществление процесса испытаний возможно с использованием образцов, имеющих стандартную кубическую форму. Сторона куба при этом может составлять 15 см. Температура, позволяющая выдержать образец, должна достигать 20°С, а относительная влажность колебаться в пределах 95%. Хранить смесь в виде испытуемых образцов можно в камере нормального хранения в нормальных условиях.

Если уровень температуры твердения отклоняется от нормального в наибольшую сторону, то созревание бетона будет осуществляться в условиях повышенной температуры. Если происходит ее отклонение к наименьшей стороне, то твердение бетона может предполагать сниженную температуру.

В таблице (ИЗОБРАЖЕНИЕ 2) отражена информация, связанная с набором прочности бетонного состава, имеющего марку от М200 до М300, изготавливаемого на основе портландцемента, маркой М-400 или М-500, за первые прошедшие 28 суток, что определяется среднесуточной температурой.

Способы заливки бетона при повышенных температурах

Среди многих факторов, оказывающих влияние на набор прочности бетонного раствора, в большей степени можно отметить следующие:

  1. Соотношение воды с цементом.
  2. Уровень уплотнения смеси.
  3. Тип цемента, необходимый при производстве раствора.
  4. Определенная температура, которая характерна в процессе твердения бетона.

Таблица критической прочности для разных марок бетона.

В подавляющем большинстве случаев, связанных с осуществлением работ с использованием раствора бетона, влияние атмосферных условий может быть слишком далеким от идеальных, поэтому необходимо принятие дополнительных мер. Когда заливка раствора осуществляется в холодный период, то отрицательные температуры требуют обеспечения прогрева смеси.

С этой целью можно применять ряд различных способов. Среди них можно выделить процесс прогрева бетона с применением электрических проводов. При этом заливку раствора делают, используя теплую опалубку. Для предотвращения процесса кристаллизации воды зимой в бетон производится ввод соответствующих антиморозных присадок.

В зимних условиях иногда может быть использован способ, который предполагает гидратацию цемента. С этой целью в бетон добавляют противоморозные вещества в небольших количествах. Температура при заливке смеси должна составлять не менее -15°С. Данные условия связаны с быстрым замерзанием воды и прекращением процесса гидратации, возобновление которого происходит только в весенний период. Применение данного метода способно приводить к процессу снижения качества бетонной конструкции.

Другое экстремальное условие связано с повышенным уровнем температуры окружающего воздуха. Данный случай позволяет увлажнять застывающий раствор. При этом после поливания раствора водой бетон должен быть укрыт специальной пленкой и слоем состава, который имеет битумную основу. Созревание бетона требует осуществления контроля над изменением объема смеси. Превышение в процентах не должно составлять 1% от первоначального уровня показателя.

Отсутствие усадки при этом является идеальным моментом, хотя на практике это не всегда становится возможным. При изменении объемов, которое имеет практическое значение, возможно применение специальных мер, далеко не всегда являющихся эффективными. Если времени на процесс высыхания бетона недостаточно, то на заливке могут появиться трещины, которые способны вызвать понижение прочности всей строительной конструкции.

Набор прочности бетона – температура, влажность, гидратация

Возведение конструкций различной конфигурации и назначения предполагает заливку фундамента. Поэтому многие строители, преимущественно начинающие, интересуются тем, каково же время набора прочности бетона. Сразу стоит отметить, что этот процесс зависит от многочисленных моментов, среди которых не только условия окружающей среды, но и составляющие самого раствора, используемого для заливки фундамента.

В этой статье мы попробуем разобраться, как набирает прочность бетон и есть ли методы ускорения этого процесса.

В чем суть процесса?

Условно, он делится на 2 этапа:

  1. Схватывание. Этот этап происходит в течение первых 24 часов после замешивания основы. Время схватываемости раствора зависит от показателей температуры в помещении или на улице. И если обеспечить должные условия, то можно ускорить схватывание бетонной массы.
  2. Твердение. Как только основа схватится, то наступает затвердение. Как ни странно, но затвердевание фундамента продолжается в течении 12-24 месяцев. При этом заявленные производителем значения, при обеспечении благоприятных условий, определяется на 28 день после заливки.
Читайте также:  Отделка дома металлосайдингом своими руками

Интересно, что во многих источниках можно найти, от чего зависит кинетика набора прочности – температур, время. влажность, качество ингредиентов. Но мало где найдешь ответ на вопрос, за счет чего бетон набирает прочность? Это происходит в процессе гидратации цемента.

В сухом материале присутствуют 4 основных элемента:

  • аллит;
  • белит;
  • трехкальциевый алюминат;
  • четырехкальциевый аллюмоферрит.

Первым при замесе в реакцию вступает аллит, но это самый хрупкий минерал. Далее идут алюминаты и алюмоферриты. Последним в реакцию вступает белит, он же и дает необходимую прочность. При этом он гидратируется постепенно, ежегодно набирая нужные параметры. Даже спустя 50 лет процесс гидратации идет, соответственно, все это время бетон продолжает набирать прочность.

Процесс гидратации цемента начинается с момента смешения с водой и продолжается в течение долгого времени

Что же касается именно бетона, то его параметры зависят от степени гидратации цемента. Если речь идет о низкой степени, то спустя 4 недели она достигнет искомых 90%. В высокопрочном составе через это же время будет только половина (до 49%), и в дальнейшем с течением времени она будет только нарастать. В среднем за 3-5 лет прирост составляет порядка 60%.

Что влияет на вызревание фундамента

Как было сказано ранее, на то, сколько бетон набирает прочность, влияет целый ряд нюансов, к основным из которых относится:

  • температурные условия окружающей среды;
  • уровень влажности в месте, где производится заливка основы;
  • марка цемента;
  • время.
Температурные условия

Набор прочности бетона в зависимости от температуры окружающей среды, это актуальный вопрос для большинства людей, которые собственными силами занимаются заливкой фундамента. Тут стоит запомнить одно главное правило: чем холоднее на улице или в помещении, где проводится бетонирование поверхности, тем больше время твердения.

Скорость набора прочности бетона в зависимости от температуры

При температуре ниже 0°С укрепление основы приостанавливается и, как следствие, срок набора прочности увеличивается на неопределенное время. Порой достижение заявленных производителем прочностных характеристик происходит спустя несколько лет. Это когда процесс происходит в северных регионах. Такое явление обусловлено тем, что вода, имеющаяся в цементной массе, замерзает. А поскольку за счет влаги обеспечивается необходимая для процесса гидратация, то и затвердевание, так сказать, «замораживается».

Но как только на улице начнет теплеть и станет выше нулевой отметки, твердение продолжится. И так далее. Так выглядит набор прочности бетона в зависимости от температуры.

Теплые погодные условия «активизируют» и ускоряют твердение цементной основы. Скорость твердения бетона в зависимости от температуры прямо пропорциональна увеличению показателей окружающей среды. Так, при 40°С заявленные производителем показатели достигаются через 7-8 дней. Именно по этой причине многие опытные специалисты рекомендуют проводить заливку бетонного фундамента на приусадебном участке в жаркую погоду, за счет чего требуется гораздо меньше времени на организацию всего строительного процесса в целом, нежели в случае с заливкой фундамента в более холодную погоду.

Зимой, как только температура опускается до отметки 0 градусов, процесс гидратации полностью прекращается

Но даже в этом случае не стоит «пережаривать» бетон – пока нижние слои схватятся, верхние начнут трескаться. Это не добавляет ни эстетики, ни твердости. При проведении работ в жаркое время поверхность 2-3 раза в день обильно поливают водой и накрывают целлофаном.

За сколько бетон набирает прочность в зимнее время года? По сути, возведение фундамента зимой – это трудоемкий процесс, который требует использования специального оборудования для регулярного прогрева цементной массы с целью ускорения процесса его затвердевания.

При работе с бетонной массой с целью ускорения ее затвердевания нагрев свыше 90°С недопустим. Это может привести к растрескиванию будущей поверхности.

Для того, чтобы понять каким образом температура влияет на процесс затвердевания, можно изучить график набора прочности бетона. Это позволит визуально разобраться в данном явлении. График набора состоит из линий, которые выстроены на основании данных, собранных для цемента М400 при разном режиме.

График твердения бетона позволяет определить, какое процентное соотношение от марочных показателей будет достигнуто через некоторый временной промежуток. Проще говоря, по этим линиям можно узнать, сколько дней масса набирает марочное значение твердости при той или иной температуре.

График набора прочности по марке цемента

Время

С целью определения оптимального, можно даже сказать, безопасного срока начала проведения строительных работ зачастую берется во внимание таблица набора прочности. По ней можно с легкостью определить за какое время застынет фундамент, приготовленной из той или иной марки цемента. Поэтому опытные специалисты всегда и пользуются подобными информационными таблицами.

Марка цемента

Среднесуточная t цементной основы, °С

Срок затвердевания по суткам

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: